
Error-State LQR Control of a Multirotor UAV

Michael Farrell12, James Jackson2, Jerel Nielsen3, Craig Bidstrup3, and Tim McLain2

Abstract— We propose an implementation of an LQR con-
troller for the full-state tracking of a time-dependent trajectory
with a multirotor UAV. The proposed LQR formulation is
based in Lie theory and linearized at each time step according
to the multirotor’s current state. We show experiments in
both simulation and hardware that demonstrate the proposed
control scheme’s ability to accurately reach and track a given
trajectory. The implementation is shown to run onboard at the
full rate of a UAV’s estimated state.

I. INTRODUCTION

Over the past two decades, multirotor unmanned air ve-

hicles (UAVs) have become a popular platform for robotics

research and the base for a variety of consumer and com-

mercial products. UAVs are currently used all over the

world for everything from military surveillance to package

delivery. Larger multirotor vehicles have even been recently

introduced to transport humans. Whatever the application,

multirotors must but able to safely navigate in their environ-

ment, requiring a combination of complex perception, motion

planning, and control algorithms. This paper describes a

novel control algorithm that allows a multirotor UAV to

accurately track a desired trajectory in time and space.

The Linear Quadratic Regulator (LQR) is a well-known

feedback controller that computes the optimal feedback gains

for a linear time-invariant (LTI) system given a quadratic cost

function. LQR has been used to control multirotor UAVs

with a variety of approaches. Almost all of these approaches

linearize the system at a given stable state and use a fixed

LQR gain [1]. Some have used a gain scheduling approach

with a library of LQR gains for different magnitudes of

deviation from the desired state [2]. Recently, an approach

was proposed that relinearizes the system at a fixed rate,

slower than the control loop, and then recomputes the LQR

gains at that rate [3]. Our proposed solution takes a similar

approach while relinearizing and recomputing the LQR gains

at every control step.

Recently there has been a movement in the robotics

community to appropriately deal with the evolution of a

robot’s state along a manifold using Lie theory [4]. Though

these methods have widely been used in the field of state

estimation [5] [6], a few methods have emerged that also

The research was supported by the National Science Foundation STTR
Phase II: Autonomous Landing of Small Unmanned Aircraft Systems onto
Moving Platforms, Award No. IIP-1758678 in partnership with Planck
Aerosystems.

1The corresponding author can be contacted at
michaeldavidfarrell at gmail.com.

2Author is with the Department of Mechanical Engineering, Brigham
Young University, Provo, UT, 84602, USA.

3Author is with the Department of Electrical and Computer Engineer-
ing, Brigham Young University, Provo, UT, 84602, USA.

Fig. 1. Hardware platform used in experiments.

apply Lie theory to control [7] [8]. We propose a formulation

of the LQR problem that properly deals with the manifold

nature of the state, specifically the attitude component. Most

previous LQR solutions for a multirotor UAV use an Euler

angle representation of attitude and treat the tuple of ZYX

Euler angles as if it were a vector space [1], even though

it is not [9]. While some methods use unit quaternions or

rotation matrices to properly represent atttiude, these are also

not inherently a vector space and extra steps are required

to orthonormalize or otherwise force the attitude to stay

on the manifold [2] [3]. The proposed solution is derived

from Lie theory and care is taken to ensure that all vector

manipulations are done with appropriate vector quantities so

that the state remains on the manifold.

Sec. II explains the multirotor UAV model used in the

proposed controller formulation. Sec. III presents traditional

LQR theory and shows how the proposed LQR formulation

is a natural extension when care is taken to apply Lie theory

to the multirotor problem. Sec. IV describes the experiments

used to demonstrate the proposed control scheme both in

simulation and in hardware. Sec. V discusses the results of

the experiments and Sec. VI provides concluding remarks.

II. MODEL

A. Notation

We define some common notation used throughout the

paper, first noting that vectors are represented with a bold

letter (e.g., v) and matrices with a capital letter (e.g., A).

2019 International Conference on Unmanned Aircraft Systems (ICUAS)
Atlanta, GA, USA, June 11-14, 2019

978-1-7281-0332-7/19/$31.00 ©2019 IEEE 704

Rb
a Rotation matrix from reference frame a to b

vc
a/b Vector state v of frame a w.r.t. frame b, expressed

in frame c

ǎ Desired value of a

ȧ Time derivative of a

ã Error of variable a, i.e., ã , a− ǎ

We also define the following coordinate frames:

I The inertial coordinate frame in north-east-down

ℓ The aircraft’s vehicle-1 (body-level) coordinate frame

b The aircraft’s body-fixed coordinate frame

We make frequent use of the skew-symmetric matrix

operator defined by

[v]× ,





0 −v3 v2
v3 0 −v1
−v2 v1 0



 , (1)

which is related to the cross-product between two vectors as

v ×w = [v]× w. (2)

We also use the standard basis vectors e1, e2, . . . , eN , where

e1 =
[

1 0 · · · 0
]T

and so forth.

B. Quaternion Representation

A quaternion q is a hyper-complex number of rank four.

It is well known that a unit quaternion ∈ S3 can be used

to efficiently represent attitude, as S3 is a double cover

of SO(3). Quaternions have the advantage over SO(3) of

being more efficient to implement on modern hardware [10],

therefore in the software implementation of the described

algorithm, we use quaternions, rather than rotation matrices.

We use Hamiltonian notation for unit quaternions ∈ S3

q =
(

q0 qxi qyj qzk
)

(3)

and define the complex numbers i, j, and k, such that

ij = −ji = k,

jk = −kj = i,

ki = −ik = j,

i2 = j2 = k2 = ijk = −1.

(4)

For convenience, we sometimes refer to the complex portion

of the quaternion as

q̄ =
[

qx qy qz
]T

(5)

and write quaternions as the tuple of the real and complex

portions

q =

(

q0
q̄

)

. (6)

Given our use of the Hamiltonian notation, the quaternion

group operator ⊗ can be written as the following matrix-like

product

qa ⊗ qb =

(

−qa0 (−q̄a)
T

q̄a qa0I + [q̄a]×

)(

qb

q̄b

)

. (7)

It is often convenient to convert a quaternion q to its

associated passive rotation matrix. This is done with

R (q) =
(

2q20 − 1
)

I − 2q0 [q̄]× + 2q̄q̄⊤ ∈ SO (3) . (8)

We also need to frequently convert between the Lie group,

S3, and the Lie algebra, R
3, which enables us to operate

in a vector space. This is done with the exponential and

logarithmic mappings. The exponential mapping for a unit

quaternion is defined as

expq : R3 → S3

expq (δ) ,





cos
(

‖δ‖
2

)

sin
(

‖δ‖
2

)

δ

‖δ‖



 , (9)

with the corresponding logarithmic map defined as

logq : S3 → R
3

logq (q) , 2 atan2 (‖q̄‖ , q0)
q̄

‖q̄‖
. (10)

To avoid numerical issues when ‖δ‖ ≈ 0, we also employ

the small-angle approximations of the quaternion exponential

and logarithm

expq (δ) ≈

[

1
δ

2

]

(11)

logq (q) ≈ 2 sign (q0) q̄. (12)

We also note that rotations may be written equivalently as

qb
a = R

(

qb
a

)

= Rb
a, where the choice of these is dictated

by convenience. We use passive rotation matrices, meaning

that the rotation matrix Rb
a acts on a vector ra, expressed

in frame a, and results in the same vector, now expressed in

frame b as

rb = Rb
ar

a. (13)

C. Quadrotor Dynamics

If we define the state of a quadrotor as the tuple of

position, velocity, and attitude

x =
(

pI
b/I ,v

b
b/I ,q

b
I

)

∈ R
3 × R

3 × S3

and the input to our system as the tuple of the throttle signal,

s, and angular velocity, ωb
b/I ,

u =
(

s,ωb
b/i

)

∈ R
1 × R

3,

then the rigid body dynamics of a multirotor UAV are as
follows [11]:

ṗ
I
b/I =

(

R
b
I

)

T

v
b
b/I

v̇
b
b/I = gR

b
Ie3 − g

s

se
e3 − cd

(

I − e3e
⊤

3

)

v
b
b/I−

[

ω
b
b/I

]

×

v
b
b/I (14)

q̇
b
I = q

b
I ⊗

(

0
1

2
ωb
b/I

)

,

where cd is a linear drag constant, se is the throttle command

required to hover, and g is the magnitude of gravity. This

model assumes a linear relationship between throttle signal

705

and thrust, which is not always the case. Although we use this

simple model, more sophisticated approaches, such as [12]

estimate this relationship online and compensate for it in real

time.

D. Error-State Dynamics

It is useful to consider what is known as the error-state

of the quadrotor. This concept has a long history in state

estimation and is used in the error-state Kalman filter [5],

[13]. The error-state is used in state estimation as a principled

way to represent the covariance about attitude in terms of a

vector space, as opposed to some local approximation. This

relationship is also useful in control for the same reason.

Performing control in the vector space of error-state provides

a principled way to leverage well-understood and efficient

linear algebra machinery to solve control problems over non-

vector quantities, such as attitude.

We define the error-state of some quantity y as

ỹ = y ⊟ y̌, (15)

where ⊟ is an appropriate difference operator, as described

by [14]. For instance, if y, y̌ ∈ R
n, the ⊟ operator may be

defined as the vector subtraction operator. However, due to

the attitude component of our state, the vector subtraction

operator is not defined between x and x̌. We instead define

the error-state piecewise for each component of the state and

combine these into an error-state vector

x̃ =
[

p̃
I
b/I ṽb

b/I r̃bI

]⊤

∈ R
9×1, (16)

where p̃I
b/I is the error-state associated with position, ṽb

b/I

is the error-state associated with velocity, and r̃bI is the error-

state associated with attitude.

In our case, the error-states associated with position and

velocity are simply defined using vector subtraction

p̃I
b/I = pI

b/I − p̌I
b/I (17)

ṽb
b/I = vb

b/I − v̌b
b/I , (18)

however, the error-state associated with attitude is more

complicated.

It is commonly understood that any representation of

attitude has three underlying degrees of freedom. A unit

quaternion has four parameters, but its error can be described

in terms of three degrees of freedom that we wish to represent

as a vector quantity. In a neighborhood sufficiently close

to the identity, these behave similarly to the Euler angle

representation of roll, pitch, and yaw. However, Euler angles

are not a vector because the sequential rotation method used

to define Euler angles nonlinearly couples the three degrees

of freedom. Therefore, we define the vector

rbI (t) = rbI (t0) +

∫ t

t0

ω
b
b/I (τ) dτ, (19)

such that rbI (t0) = 0 and ṙbI = ωb
b/I . With this definition,

we can use (9) and (10) to express

qb
I = q̌b

I ⊗ expq (r̃) (20)

r̃ = logq

(

(

q̌b
I

)−1
⊗ qb

I

)

, (21)

as described by [14].

Even though rbI is a vector, we cannot simply compute

the error-state as r̃bI = rbI − řbI because rbI is a minimal

representation of qb
I , which is a double cover of the Lie

group SO(3). Vector subtraction of members in this group is

not valid. However, the derivative of rbI exists in the tangent

space of SO(3), so we can perform

˙̃rbI = ṙbI −Rb
I

(

Řb
I

)⊤ ˙̌rbI , (22)

where Rb
I

(

Řb
I

)⊤
moves the desired vector derivative, ˙̌rbI ,

from its own tangent space to the tangent space of ṙbI . With

both vectors in the same tangent space, the vector subtraction

in (22) is valid.

For use in control, we similarly define an error-state for

the control input with the error-state being the difference

between the current control input and some reference input.

Using the same definition as in (15), we can see that

s̃ = s− š (23)

ω̃
b
b/I = ω

b
b/I − ω̌

b
b/I (24)

where š and ω̌b
b/I are respectively the reference throttle

signal and reference angular velocity. Note that we do not

model the dynamic response to these inputs. Instead, our

model assumes that the multirotor instantaneously reaches

any commanded throttle and angular velocity.

Using the error-state definitions above, we can derive the

error-state dynamics of the quadrotor as

˙̃pI
b/I =

(

Rb
I

)T

ṽb
b/I −

(

Rb
I

)T
[

vb
b/I

]

×
r̃bI

˙̃vb
b/I = g

[

Rb
Ie3

]

×
r̃bI − g

s̃

se
e3 − cd

(

I − e3e
T

3

)

ṽb
b/I

−
[

ω
b
b/I

]

×
ṽb
b/I +

[

vb
b/I

]

×
ω̃

b
b/I

˙̃rbI = ω̃
b
b/I −

[

ω
b
b/I

]

×
r̃bI , (25)

or succinctly,
˙̃x = f (x, x̃,u, ũ) . (26)

The derivation of these error-state dynamics can be found in

the Appendix.

III. LQR CONTROL

A. Traditional LQR

A linear-quadratic regulator provides the optimal state

space controller gains for an LTI system given by

ẋ = Ax+Bu, (27)

assuming full-state feedback. We define the cost-to-go for

the infinite-time solution as

J(x,u) =

∫ ∞

0

(

x⊤Qx+ uRu
)

dt (28)

with Q and R being positive definite matrices that define

the costs associated with the state and the input. The cost

function given in (28) is minimized by the control input

u = −Kx, (29)

706

where K is given by

K = R−1B⊤P, (30)

and P is the solution to the Continuous-time Algebraic

Riccati Equation (CARE),

A⊤P + PA− PBR−1B⊤P +Q = 0. (31)

It should be noted that in its basic form, an LQR controller

is simply a regulator and the control input u will only attempt

to drive the state to zero in an optimal way. If the desire is

for the system to reach a desired state, x̌, one can start by

defining the error-state as

x̃ = x− x̌ (32)

and redefining the control input as

ũ = −Kx̃. (33)

This technique, however, will generally result in steady-state

error between the state x and the reference trajectory x̌. The

steady-state error can be removed by augmenting the state

with an integrator or by applying a model-based feed-forward

control input,

u = ũ+ ǔ = −Kx̃+ ǔ. (34)

A direct application of (32) in our case is not defined

because the multirotor state is not a vector quantity. To

compensate for this, we propose to compute control based on

the error-state dynamics of the system, where the error-state

is purely a vector quantity.

B. Error-State LQR

We can apply the same LQR approach to the error-state

dynamics from (25). Since LQR control is a regulator, it

will drive the error-state to zero, or our current state to our

desired state. Since LQR is only defined for an LTI system,

we can approximate the error-state system as an LTI system

by linearizing about the current state at each time step. This

gives us the system

˙̃x = Ax̃+Bũ (35)

with the matrices A and B given by

A(x,u) =
∂

∂x̃
f(x, x̃,u, ũ) (36)

B(x,u) =
∂

∂ũ
f(x, x̃,u, ũ). (37)

Using the error-state dynamics in (25) and dropping the

subscripts and superscripts for compactness it can be seen

that

A(x,u) =
∂

∂x̃
f(x, x̃,u, ũ) (38)

=









0
∂ ˙̃p
∂ṽ

∂ ˙̃p
∂r̃

0 ∂ ˙̃v
∂ṽ

∂ ˙̃v
∂r̃

0 0 ∂ ˙̃r
∂r̃









(39)

with the individual components given by

∂ ˙̃p

∂ṽ
=

(

Rb
I

)T

(40)

∂ ˙̃p

∂r̃
= −

(

Rb
I

)T
[

vb
b/I

]

×
(41)

∂ ˙̃v

∂ṽ
= −cd

(

I − e3e
T

3

)

−
[

ω
b
b/I

]

×
(42)

∂ ˙̃v

∂r̃
=

[

gRb
Ie3

]

×
(43)

∂ ˙̃r

∂r̃
= −

[

ω
b
b/I

]

×
. (44)

It can similarly be seen that

B(x,u) =
∂

∂ũ
f(x, x̃,u, ũ) (45)

=









0 0

∂ ˙̃v
∂s̃

∂ ˙̃v
∂ω̃

0 ∂ ˙̃r
∂ω̃









(46)

with the individual components given by

∂ ˙̃v

∂s̃
= −

g

se
e3 (47)

∂ ˙̃v

∂ω̃
=

[

vb
b/I

]

×
(48)

∂ ˙̃r

∂ω̃
= I3×3. (49)

By linearizing at every time step, the CARE must be

solved at each time step with the current A and B matri-

ces. We use the closed form, Schur decomposition method

described in [15]. This method allows us to relinearize and

recompute the optimal control at full rate in our experiments.

Although we relinearize and solve the CARE at each time

step, the Q and R gain matrices are fixed. We choose these

gains based on Bryson’s rule [16]. In addition, we have found

that better results are achieved by saturating the error-state

in accordance with the maximum error terms used to choose

the gains with Bryson’s rule.

IV. EXPERIMENT

To test the proposed error-state LQR controller, we de-

signed two experiments to be performed in simulation and

hardware: (i) tracking step inputs to the desired position

of the UAV and (ii) tracking time-dependent full-state tra-

jectories. We first explain how we generate these time-

dependent trajectories for the experiments and then detail

the experimental setup for both simulation and hardware.

A. Trajectory Generation

One important consideration in high-performance control

of quadrotors is the generation of smooth, feasible trajecto-

ries. The quadrotor has the benefit of being differentially flat

which means that the required inputs to the quadrotor can be

fully defined using derivatives of the outputs of the system,

the desired position and heading [17]. If we are given some

707

smooth, differentiable trajectory of our desired position and

heading then we can compute the full state and required

inputs as a function of time












p̌I
b/I (t)

q̌b
I (t)

v̌I
b/I (t)

š (t)
ω̌I

b/I (t)













= f̌











p̌I
b/I (t)
˙̌pI
b/I (t)

¨̌pI
b/I (t)

ψ̌I
b/I (t)











. (50)

We derive the general case where the desired yaw angle of

the multirotor UAV is a function of time. However, since it

is well known that the yaw angle of a multirotor UAV is

easily controllable independent of the other states [17], we

simply command a constant zero yaw in our experiments.

We now derive the differentially flat outputs. First, desired

position is given to us directly

p̌I
b/I = p̌I

b/I . (51)

To derive desired attitude and throttle signal we start by

applying Newton’s second law, and consider the rotation

from the heading-rotated, body-level coordinate frame, ℓ, to

the body frame, b. Note that to avoid the need for an iterative

solution, we neglect the forces due to drag that are accounted

for in the quadrotor dynamics in (14). Newton’s second law

is given by
∑

F I = m¨̌pI
b/I (52)

−T
(

Řb
ℓ

)T

+mge3 = m¨̌pI
b/I (53)

T

m

(

Řb
ℓ

)T

e3 = ge3 − ¨̌pI
b/I . (54)

If we then define ǎ = ge3− ¨̌pI
b/I , then we get the following

expression
T

m

(

Řb
ℓ

)T

e3 = ǎ (55)

where T and Řb
ℓ must satisfy the following conditions:

T

m
= ‖ǎ‖ (56)

ŘI
ℓe3 =

ǎ

‖ǎ‖
. (57)

Because T = s
se
gm, then

š =
se

g
‖ǎ‖ (58)

and (57) can be solved with

q̌b
ℓ = expq (θδ) (59)

where

θ = cos−1

(

eT3
ǎ

‖ǎ‖

)

(60)

δ = [e3]×
ǎ

‖ǎ‖
. (61)

The heading portion of attitude can now be applied to give

us our full desired attitude

q̌b
I = expq

(

ψ̌e3
)

⊗ q̌b
ℓ. (62)

Desired velocity can be found using the desired attitude

v̌b
b/I = Řb

I
˙̌pI
b/I , (63)

and the required angular rate is found by taking the time

derivative of our desired attitude

ω̌
b
b/I =

d

dt
q̌b
I . (64)

In our implementation, we do this numerically with central

differencing on the manifold.

In summary, the differentially flat output of a quadrotor is

given as follows:

p̌I
b/I = p̌I

b/I (65)

q̌b
I = expq

(

ψ̌e3
)

⊗ q̌b
ℓ (66)

v̌b
b/I = Řb

I
˙̌pI
b/I (67)

š =
se

g

∥

∥

∥ge3 − ¨̌pI
b/I

∥

∥

∥ (68)

ω̌
b
b/I =

d

dt
q̌b
I . (69)

The examples in this work all reference the same figure-

eight trajectory defined by

p̌I
b/I (t) = pI

b/I (t0) +







δx sin
(

T
2π t

)

δy sin
(

T
π t

)

δz sin
(

T
2π t

)






(70)

ψ̌I
b/I (t) = 0 (71)

where the δ(·) parameters define the dimensions of the trajec-

tory, and T defines the period. While a trajectory defined by

periodic functions is useful for simple demonstrations such

as what we perform in this work, we direct the reader to more

sophisticated methods of differentiable trajectory generation

such as [17] for practical application.

B. Simulation

For simulation, we use Gazebo1 and ROS2 with the

ROSflight software-in-the-loop (SIL) simulation [18]. This

simulation setup allows us to test the exact code that also

runs in hardware.

C. Hardware

A custom multirotor UAV built on a DJI 450 Flamewheel

frame with an STM32F1 microcontroller running the ROS-

flight [18] flight control firmware was flown for the hardware

experiments. The algorithm was implemented and run in real

time onboard on an NVIDIA Jetson TX2. Though the TX2

has a GPU, all computation is done using only the ARM

CPU, showing that this algorithm can also run at full rate on

a variety of popular onboard computers. The multirotor UAV

was flown in a small motion capture room with feedback

from an OptiTrack3 motion tracking system. The global

position and attitude measurements from the motion capture

system are fused in real time with the onboard IMU of the

1Gazebo: www.gazebosim.org
2Robot Operating System: www.ros.org
3OptiTrack: www.optitrack.com

708

simplifying we get

˙̃vb
b/I =

(

gRb
Ie3 − g

s

se
e3

−cd
(

I − e3e
T

3

)

vb
b/I −

[

ω
b
b/I

]

×
vb
b/I

)

−

(

gŘb
Ie3 − g

š

se
e3

− cd
(

I − e3e
T

3

)

v̌b
b/I −

[

ω̌
b
b/I

]

×
v̌b
b/I

)

(87)

=
(

gRb
Ie3 − gŘb

Ie3)−

(

g
s

se
e3 − g

š

se
e3

)

−
(

cd
(

I − e3e
T

3

)

vb
b/I

− cd
(

I − e3e
T

3

)

v̌b
b/I

)

−

(

[

ω
b
b/I

]

×
vb
b/I −

[

ω̌
b
b/I

]

×
v̌b
b/I

)

(88)

≈
(

gRb
Ie3 − g

(

I +
[

r̃bI
]

×

)

Rb
Ie3

)

−

(

g
s̃

se
e3

)

−
(

cd
(

I − e3e
T

3

)

ṽb
b/I

)

−

(

[

ω
b
b/I

]

×
vb
b/I

−
[(

ω
b
b/I − ω̃

b
b/I

)]

×

(

vb
b/I − ṽb

b/I

)

)

(89)

=
(

−g
[

r̃bI
]

×
Rb

Ie3

)

−

(

g
s̃

se
e3

)

−
(

cd
(

I − e3e
T

3

)

ṽb
b/I

)

−

(

[

ω
b
b/I

]

×
vb
b/I

−
[(

ω
b
b/I − ω̃

b
b/I

)]

×

(

vb
b/I − ṽb

b/I

)

)

.

(90)

By simplifying and neglecting higher-order terms, we get

the final expression

˙̃vb
b/I = g

[

Rb
Ie3

]

×
r̃bI − g

s̃

se
e3

− cd
(

I − e3e
T

3

)

ṽb
b/I

−
[

ω
b
b/I

]

×
ṽb
b/I +

[

vb
b/I

]

×
ω̃

b
b/I .

(91)

3) Attitude: To derive the error state dynamics corre-

sponding to attitude, we start with (22). From (19) we see

that ṙbI = ωb
b/I . Substituting this defintion into (22) we get

˙̃rbI = ω
b
b/I −Rb

I

(

Řb
I

)T

ω̌
b
b/I . (92)

We can simplify this expression and show that

˙̃rbI = ω
b
b/I −Rb

I

(

Rb
I

)T (

R
(

expq
(

r̃bI
)))T

ω̌
b
b/I (93)

≈ ω
b
b/I −Rb

I

(

Rb
I

)T
(

I −
[

r̃bI
]

×

)

ω̌
b
b/I (94)

= ω
b
b/I −

(

I −
[

r̃bI
]

×

)(

ω
b
b/I − ω̃

b
b/I

)

. (95)

By simplifying and neglecting higher-order terms, we get the

final expression

˙̃rbI = ω̃
b
b/I −

[

ω
b
b/I

]

×
r̃bI . (96)

REFERENCES

[1] I. D. Cowling, O. A. Yakimenko, J. F. Whidborne, and A. K. Cooke,
“A prototype of an autonomous controller for a quadrotor UAV,” in
2007 European Control Conference (ECC). IEEE, 2007, pp. 4001–
4008.

[2] E. Reyes-Valeria, R. Enriquez-Caldera, S. Camacho-Lara, and
J. Guichard, “LQR control for a quadrotor using unit quaternions:
Modeling and simulation,” in Electronics, Communications and Com-

puting (CONIELECOMP), 2013 International Conference on. IEEE,
2013, pp. 172–178.

[3] P. Foehn and D. Scaramuzza, “Onboard state dependent LQR for agile
quadrotors,” in 2018 IEEE International Conference on Robotics and

Automation (ICRA). IEEE, 2018, pp. 6566–6572.
[4] J. Solà, J. Deray, and D. Atchuthan, “A micro Lie theory for state

estimation in robotics,” arXiv preprint arXiv:1812.01537, 2018.
[5] J. Solà, “Quaternion kinematics for the error-state Kalman filter,” arXiv

preprint arXiv:1711.02508, 2017.
[6] D. P. Koch, D. O. Wheeler, R. Beard, T. McLain, and K. M. Brink,

“Relative multiplicative extended Kalman filter for observable GPS-
denied navigation,” 2017.

[7] Y. Yu, S. Yang, M. Wang, C. Li, and Z. Li, “High performance full
attitude control of a quadrotor on SO (3),” in 2015 IEEE International

Conference on Robotics and Automation (ICRA). IEEE, 2015, pp.
1698–1703.

[8] T. Lee, M. Leok, and N. H. McClamroch, “Geometric tracking control
of a quadrotor UAV on SE (3),” in 49th IEEE conference on decision

and control (CDC). IEEE, 2010, pp. 5420–5425.
[9] J. Diebel, “Representing attitude: Euler angles, unit quaternions, and

rotation vectors,” 2006.
[10] R. T. Casey, M. Karpenko, R. Curry, and G. Elkaim, “Attitude

representation and kinematic propagation for low-cost UAVs,”
AIAA Guidance, Navigation, and Control (GNC) Conference, pp.
1–25, 2013. [Online]. Available: http://arc.aiaa.org/doi/abs/10.2514/6.
2013-4615

[11] R. Leishman, J. Macdonald, R. Beard, and T. McLain, “Quadrotors and
accelerometers: State estimation with an improved dynamic model,”
IEEE Control Systems Magazine, vol. 34, no. 1, pp. 28–41, Feb 2014.

[12] E. Small, P. Sopasakis, E. Fresk, P. Patrinos, and G. Nikolakopoulos,
“Aerial navigation in obstructed environments with embedded non-
linear model predictive control,” arXiv e-prints, p. arXiv:1812.04755,
Dec 2018.

[13] F. L. Markley, “Multiplicative vs. additive filtering for spacecraft
attitude determination,” 2004.

[14] C. Hertzberg, R. Wagner, U. Frese, and L. Schröder, “Integrating
generic sensor fusion algorithms with sound state representations
through encapsulation of manifolds,” Information Fusion, vol. 14,
no. 1, pp. 57–77, 2013.

[15] A. Laub, “A Schur method for solving algebraic Riccati equations,”
IEEE Transactions on automatic control, vol. 24, no. 6, pp. 913–921,
1979.

[16] J. P. Hespanha, Linear systems theory. Princeton University Press,
2018.

[17] D. Mellinger and V. Kumar, “Minimum snap trajectory generation
and control for quadrotors,” in 2011 IEEE International Conference

on Robotics and Automation. IEEE, 2011, pp. 2520–2525.
[18] J. Jackson, G. Ellingson, and T. McLain, “ROSflight: A lightweight,

inexpensive MAV research and development tool,” in 2016 Interna-

tional Conference on Unmanned Aircraft Systems (ICUAS). IEEE,
2016, pp. 758–762.

711

